ExamJEE Classes

Hello world!

[latexpage]

$\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin \left( \pi \cos {{x}^{2}} \right)}{{{x}^{2}}}$

MathJax is highly modular on input and output. Use MathML, TeX and ASCIImath as input and produce HTML+CSS, SVG and MathML as output.

When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]

\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]

\sqrt{b^2-4ac} \over 2a}.\
\sqrt {{a^2} + {b^2}}\

$latex \displaystyle \frac{dy}{dx}$

$latex \displaystyle \sqrt{{{a}^{2}}+{{b}^{2}}}\\\\\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\\\underset{x\to \infty }{\mathop{\lim }}\,f(x)\\\frac{n!}{r!\left( n-r \right)!}\\\frac{dy}{dx}&s=1$

\displaystyle \iint _{ x=0 }^{ x=n }{ f^{ 2 }\left( x \right) }

$latex \displaystyle \Huge \int { \frac { f\left( x \right) }{ g\left( x \right) } } \\ \\ \int { \frac { h\left( x \right) }{ g\left( x \right) } } $

$latex \displaystyle \iint _{ x=0 }^{ x=n }{ f^{ 2 }\left( x \right) } &s=1 $

$latex \displaystyle i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right>&s=1$

$latex \displaystyle i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right> &s=1$

$latex \displaystyle i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right> &s=4$

$latex \displaystyle i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right> &=1$

$latex \displaystyle \iint _{ x=0 }^{ x=n }{ f^{ 2 }\left( x \right) } &s=4$

 \displaystyle i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right> \huge

$latex \displaystyle \iint _{ x=0 }^{ x=n }{ f^{ 2 }\left( x \right) } \huge $

Click here to open lightbox Click here to open lightbox Page Click here to open lightbox

 

Welcome

 

 

Ucale Membership 


PRIVATE COURSE

Dielectric Constant

Login

Register

Course Search Bar

 

Email

 

 

 

$latex \displaystyle u\cos \alpha =v\cos {{30}^{\circ }}\\v\sin {{30}^{\circ }}=u\sin \alpha -g\times 2\\Fig.\text{ }47\text{ }From\text{ }\left( 2 \right)\text{ }and\text{ }\left( 3 \right)\\v\sin {{30}^{\circ }}=\frac{v}{2}=3g-2g=g\\\text{Thus, }&s=1$

May 4, 2023

0 responses on "Hello world!"

Leave a Message

What you want to practice?
Choose an option. You can change your option at any time.
You will be solving questions and growing your critical thinking skills.
Create a free account
By clicking Sign up I agree with the Ucale's Terms and Privacy Policy
OR

Learn to Think

top

Setup Menus in Admin Panel